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Abstract
We have studied electron magnetic resonance (EMR) in ferromagnetic-metal nanoparticle
systems which show promise as a component of left-handed metamaterials. Metallic Ni
nanoparticles of about 8 nm in diameter are embedded in polymer films. When the average
distance between the nanoparticles is decreased, we observed that the EMR signal shifts and
broadens. Theoretical analyses based on micromagnetics simulation confirm that the shift of the
signal is traced back to an increase in the magnetic dipole field in the nanoparticle systems due
to the decrease in interparticle distance. Moreover, the simulation reveals that the perpendicular
component of the dipolar field causes the broadening of the signal. The present study
demonstrates that a dynamic analysis of the magnetization, with an explicit treatment of the
magnetic dipole interactions, is necessary for a thorough understanding of the EMR and
magnetic permeability of interacting nanoparticle systems.

1. Introduction

Metamaterials consisting of artificial building blocks much
smaller than the wavelengths of electromagnetic (EM) waves
are a rich and rapidly growing area in microwave optics
and photonics [1]. Left-handed metamaterials (LHMs),
which mimic negative electric permittivity (ε) and magnetic
permeability (μ) simultaneously, are of particular interest
because they show intriguing EM responses, e.g. negative
refraction and inverse Doppler shift [2]. The negative
refraction has led to the consideration of LHMs, or negative
index of refraction metamaterials, for applications in perfect
lenses [3] and compact optical components [4]. Moreover,
metamaterials having positive but finite values of μ between
0 and 1 open the door to an EM cloak [5].

A tailored value of μ, even of negative μ, is obtained
using magnetic resonance. Structural magnetic resonance with

split-ring resonators, which are made of a non-magnetic metal
such as Cu, is a well-known technique to achieve negative μ in
microwave regions [6, 7]. On the other hand, an alternative
route using intrinsic magnetic resonance of ferromagnetic
metals, for example, Fe, Co and Ni, has been plotted [8]. Using
electron magnetic resonance (EMR) in the metals, negative
μ is obtained around an EMR frequency [9]. The resonance
frequency tunability with an external magnetic field is expected
to be a significant advantage of this route. It is, however,
necessary to miniaturize the ferromagnetic-metals, i.e. prepare
ferromagnetic-metal nanoparticle systems, in order to suppress
the eddy-current losses.

In spite of intensive studies [10–12], the EMR in
ferromagnetic-metal nanoparticle systems is poorly under-
stood. The magnetic behavior and dynamics of magnetization
in nanoparticle systems are dependent both on single-particle
properties, such as magnetocrystalline or shape anisotropies of
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a particle [13–17], and on interparticle interactions [18, 19].
For magnetically isolated particles with negligible interaction,
one needs to consider only single-particle properties. In con-
trast, in the case of strongly interacting particle systems, an
explicit treatment of the interactions is necessary [20, 21].

Magnetic interactions between nanoparticles strongly
affect the position and linewidth of the EMR spectra [22–25].
In nanoparticle systems, we usually consider two kinds of
interactions: long range magnetic dipole interactions and
short range direct/indirect exchange interactions [26–28]. The
relative importance of each to EMR depends on the particle
diameter (d) and center-to-center interparticle separation
(r ) [29]. Therefore, from an experimental point of view,
nanoparticles with independently controlled d and r are
necessary to study EMR in an interacting nanoparticle
system [30].

Recently, we succeeded in embedding metallic Ni
nanoparticles into polymer thin films in a controlled
manner [31–34]. A significant feature of this technique is a
decrease in r of the nanoparticles, which maintain a fixed d at
the level of several nanometers. This is not achieved through
particle manipulation, but by shrinking the polymer matrices,
which results in a good model system for experimental studies
of the magnetic interaction in single-domain ferromagnetic-
metal nanoparticle systems. We have reported that the EMR
signals of the Ni nanocomposite film strongly depend on
d and r of Ni nanoparticles [32]. Nonetheless, the exact
mechanics of the interactions affecting the resonance condition
are still unclear. A detailed theoretical consideration is thus
indispensable.

From a theoretical point of view, the resonance absorption
of microwave power by a film consisting of a lattice of point
magnetic dipoles has been studied so far [35, 36]. The
resonance condition of the thin films is well known to be
described by Kittel’s equations [37]. Kittel’s equations are
enough to explain the EMR field of nanoparticle systems
embedded in thin films. The equations are, however,
inadequate for discussing the linewidth of the signal [32]. The
evaluation of the EMR linewidth is critical in an estimation of
μ of nanoparticle systems. It is thus essential to directly solve
the Landau–Lifshitz–Gilbert (LLG) motion equation of the
magnetization. Many numerical models have been proposed.
A direct solution of the LLG equation was discussed for
larger magnetic particles, in which several magnetic domains
exist [24, 38]. Although the set of single-domain particles
with random direction of magnetization was investigated [39],
the model does not include the dipole interactions between
the particles. These models are thus insufficient in a study
of single-domain nanoparticle systems with mutual dipolar
interaction. Very recently, we constructed a numerical
model for the nanoparticle systems and evaluated μ of the
system [40]. The comparison with experimental EMR results
is, however, lacking.

The purpose of this work is to increase knowledge about
the dynamics of the magnetization of particles in interacting
single-domain ferromagnetic-metal nanoparticle systems and
to understand the EMR of the systems. A computer simulation,
in which the dipolar interactions between the particles are

Figure 1. Schematic illustrations of (a) a magnetically isolated
spherical nanoparticle and (b) a 3D array of interacting nanoparticles.

considered explicitly, has been conducted in order to interpret
the experimental EMR results. In particular, we focus our
attention on the resonance field and its linewidth. This paper is
organized as follows; the following two sections describe the
theoretical background (section 2) and simulation framework
(section 3) for EMR in nanoparticle systems. We briefly
describe experimental procedures in section 4. Section 5 shows
experimental and numerical results followed by a discussion.
Finally, we conclude by highlighting the advantages of our
numerical model.

2. Theoretical background

Let us start with the EMR in a magnetically isolated spherical
Ni nanoparticle. We consider a nanoparticle with a total
magnetic moment m as illustrated in figure 1(a). Under an
external magnetic field Hext, the moment m precesses at an
angular frequency ωL (the Larmor frequency). The ωL is
expressed as ωL = |γ |Hint [37], where Hint is an internal
magnetic field that is equal to Hext for an ideal spherical
particle and γ is the gyromagnetic ratio that is related to the g
value by γ = −2πgμB/h. Here, μB is the Bohr magneton and
h is the Planck constant. On resonance, the particle magnetic
moment precessing at ωL absorbs a microwave with the same
frequency ν (2πν = ωL). EMR measurements are usually
carried out by sweeping Hext at a constant ν. The resonance
condition is thus expressed simply as Hext = Hint = ωL/|γ | =
2πν/|γ | = H0, where H0 denotes the resonance field for the
magnetically isolated spherical nanoparticle. For an isolated
Ni nanoparticle measured at the X band (ν = 9–10 GHz),
the resonance field H0 is expected to be about 3000 Oe from
ferromagnetic resonance in a bulk Ni sphere (g = 2.21) [37].

If the particle is non-spherical in shape, the resonance
condition will be changed, i.e. Hext �= Hint, owing to the
demagnetization field in the particle. However, we consider
spherical Ni particles in this paper. The demagnetization
field in the Ni particle is thus disregarded. The direction
of magnetic moment m is treated as uniform in the particle.
Additionally, Ni particles are small enough to be regarded
as single-domain particles in this paper. These allow us the
single-spin approximation for the total magnetic moment in the
Ni nanoparticle in the following equations.

In an interacting particle system, we take the dipole
interactions between the particles into consideration. The
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dipolar field (Hdip) generated by a particle having m at
distance r is described as

Hdip = −m

r 3
+ 3(m · r)r

r 5
. (1)

Taking Hdip into consideration, we may express the magnetic
field applied to the interacting nanoparticle system by Hext +
Hdip. The resonance occurs when Hext = H ′

0 which satisfies
the resonance condition |Hext + Hdip| = |H ′

0 + Hdip| = H0.
The form of equation (1) allows the calculation of the

point dipole approximation. The validity of this approximation
depends on the interparticle distance. If the interparticle
distance is very small, equation (1) should be replaced by
an equation including quadruple or higher-order interactions.
Since the exact calculation of Hdip is complicated, particularly
for particles which are only slightly separated [41, 42], we
accept the values with a simple discussion of the use of
equation (1).

As expressed in equation (1), Hdip gives long range
interactions between particles. The exact formula of the dipolar
field can be obtained by integrating equation (1). In the present
investigation, we intend to analyze nanoparticle systems, in
which the particle diameter is small enough and each magnetic
particle can be regarded as a single domain. We thus use an
approximation of the summation of the point dipole in the
following. Using m = (mx , m y, mz) and r = (rx , ry, rz), the
x , y, z components of the total dipolar field in the nanoparticle
system H total

dip = ∑
Hdip are described, respectively, as

H total(x)

dip

=
∑[

−mx

r 3
+ 3(mx · rx + m y · ry + mz · rz)rx

r 5

]

, (2)

H total(y)

dip

=
∑[

−m y

r 3
+ 3(mx · rx + m y · ry + mz · rz)ry

r 5

]

, (3)

H total(z)
dip

=
∑[

−mz

r 3
+ 3(mx · rx + m y · ry + mz · rz)rz

r 5

]

. (4)

In the present experiments, nanoparticles are embedded
in the surface layer of thin polymer films. For a rough
approximation, it is acceptable to consider the thin composite
layer as a two-dimensional (2D) infinite film. We assume
that the magnetizations in particles are uniformly laid in the
direction of an applied field. In other words, equations (2)–
(4) can be calculated with the continuum approximation of
magnetization. These calculations provide the simple aspects
of dipole interaction in our composite film system.

Here, θ and φ are defined in figure 1(b); θ is the angle
between the z axis and Hext. When the external magnetic
field Hext is applied along the z axis, i.e. θ = 0◦, m =
(0, 0, mz) because we assume Hext � Hdip and r = (rx , ry, 0).
Consequently, H x

dip = H y
dip = 0 and H z

dip are expressed as

H z
dip = −mz

r 3
= −|m|

r 3
. (5)

By integrating H z
dip in equation (5) for the 2D array of the

particles, the H total
dip can be calculated semi-quantitatively as

H total
dip =

∫ 2π

0

∫ ∞

r0

−|m|
r 3

r dr dφ ∝ −m

r0
, θ = 0◦. (6)

On the other hand, when Hext is applied along the x
axis (the θ = 90◦ configuration), m is pointed in the
x direction. m = (mx , 0, 0) at (r cos φ, r sin φ, 0) in a
cylindrical coordinate generates the dipolar field H x

dip which
is represented by

H x
dip = −mx

r 3
+ 3(mxr cos φ)(r cos φ)

r 5
= (3 cos2 φ − 1)mx

r 3
.

(7)
The dipolar field H z

dip is equal to zero and H y
dip becomes zero

after integration. By integrating H x
dip in equation (7) for the 2D

array, we obtain H total
dip semi-quantitatively as

H total
dip =

∫ 2π

0

∫ ∞

r0

(3 cos2 φ − 1)mx

r 3
r dr dφ (8)

∝ m

2r0
, (mx = m) θ = 90◦. (9)

As a result, the modified resonance condition H ′
0 = H0 −

H total
dip predicts that, owing to the dipolar field H total

dip , H ′
0 at

θ = 90◦ is smaller than H0 and H ′
0 at θ = 0◦ is larger

than H0. Additionally, we notice that the absolute value of
H total

dip at θ = 0◦ in equation (6) is twice as large as that at
θ = 90◦ in equation (9). These equations are enough to
quantitatively interpret the resonance field of the nanoparticle
systems embedded in thin films [32]. However, information on
the intensity and linewidth of the resonance is lacking. We
thus need to carry out a dynamic analysis on the EMR of
nanoparticle systems with the effect of the dipolar field.

3. Framework of model simulation

The numerical model is dynamically treated by solving the
LLG motion equation of magnetization. The motion equation
of magnetization in the i th Ni particle can be written as

dmi

dt
= − γ

1 + α2
(mi × H i

int)

− αγ

ms(1 + α2)
{mi × (mi × H i

int)}, (10)

where α is the Gilbert damping factor, which is phenomeno-
logically introduced in the motion equation. The magnetic field
H i

int includes the applied field Hext and the dipolar field H total
dip

as Hint = Hext + H total
dip . In the present simulation, H total

dip is
quantitatively given by a summation of equation (1), instead of
equations (6) and (9) for discrete particles. To simulate EMR
experiments, Hext is defined by the following equation:

Hext = H sw
ext + Hp sin(2πνt), (11)

where H sw
ext is a dc sweeping and Hp sin(2πνt) is an ac

irradiation field for EMR. H sw
ext and Hp satisfy H sw

ext · Hp = 0.
In the sine function, t is time and ν is frequency.
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For the sake of simplicity, we use a three-dimensional
(3D) periodic lattice of magnetization as shown in figure 1(b).
The Ni particles are arranged in a 9 × 9 × 5 lattice with the
lattice spacing r0. The lattice spacing r0 in the present model is
assigned to the interparticle distance. We directly solve the
LLG equation for the magnetization mi of the i th particles
8 nm in diameter, which is very similar to dave of Ni particles
studied in the experiments. The magnetization mi is given
by mi = μs2πd3

i /3a3 emu, where di is the diameter of the
particle, a is the lattice constant of bulk fcc-Ni and μs is the
magnetic moment of an Ni atom. When di = 8 nm, mi is
1.3 × 10−16 emu. The α of a nanoparticle in equation (10) is
set to be 0.01 in this study [43].

In the x and y directions, the periodic boundary condition
is applied to take account of the symmetry of the dipolar field.
On the other hand, the open boundary condition is provided
in the z direction to consider the effect of the composite film
thickness. These boundary conditions allow us to regard the
model described in figure 1(b) as a thin film. The numerical
calculation of equation (10) is carried out using the forward
differential method. The time step 
t in the differential
equation is defined as 
tν = 9 × 10−4. The sweeping field
H sw

ext was applied for the directions θ = 0◦ or 90◦. The
frequency and the amplitude of an irradiation field are defined
as ν/(γ H0) = 1.6 and Hp/H0 = 1.6×10−4, respectively. The
initial direction of magnetization is uniform in the z direction
for θ = 0◦ and in the x direction for θ = 90◦.

The magnetic moment m of the composite film is obtained
from a summation m = ∑

mi . The m precesses around
the H sw

ext axis and the microwave power is absorbed by the
irradiation of Hp. Thus, the value m ·Hp gives the absorption
of the composite film. By using m · Hp, the motion of the
moment is expressed as

m Hp = m · Hp

ms Hp
, (12)

which is a projection of a magnetization vector in the Hp

direction. ms is the saturation magnetization of the Ni particle.
The calculated m Hp as a function of time is plotted in

figures 2(a) and (b) when r0 = ∞ and θ = 0◦, where r0 = ∞
corresponds to a magnetically isolated particle. Figure 2(a)
exhibits the time evolution of m Hp for the on-resonance state
(H sw

ext = H0). The amplitude of the oscillation increases
gradually until 6 ns where it reaches its equilibrium. However,
for the off-resonance state (H sw

ext = 1.09H0), the amplitude
of the oscillation is suppressed as shown in figure 2(b).
Figure 2 demonstrates that we have succeeded in observing
the precession at the resonance in numerical simulations. The
calculated value of absorption m Hp is plotted as a function of
H sw

ext , forming the absorption lineshape. This line profile is
analyzed by fitting it to a Lorentzian lineshape.

4. Experimental procedures

Detailed procedures for embedding metallic Ni nanoparticles
in pyromellitic dianhydride-oxydianiline (PMDA-ODA)-type
polyimide (PI) films (Kapton 200-H) were described in our
previous articles [31, 32]. Briefly, PI films were treated

Figure 2. Dynamic motion of magnetization in a composite film for
(a) resonance state and (b) off-resonance state. A swept external
magnetic field (H sw

ext ) is indicated. The particles are magnetically
isolated (r0 = ∞). This result corresponds to the perpendicular
configuration.

with aqueous potassium hydroxide (KOH) (5 mol dm−3)
for 7 min and were subsequently immersed in aqueous
NiCl2 (50 mmol dm−3) in order to adsorb Ni2+ by ion-
exchange reaction. The concentration of adsorbed Ni2+
(N) estimated by inductively coupled plasma (ICP) atomic
emission spectroscopy was 1972.5 × 10−9 mol cm−2. The
adsorption of Ni2+ was followed by thermal annealing in
an H2 gas. The films were annealed at 300 ◦C for 0–
130 min. The Ni2+ in the films were completely reduced
to Ni atoms at 300 ◦C, leading to the growth of the metallic
Ni nanoparticles [34]. The hydrogen-induced reduction
thus yielded surface nanocomposite layers consisting of Ni
nanoparticles embedded in PI matrices.

In order to evaluate the thickness of the composite layers
and diameter of the Ni nanoparticles, the cross sections of the
films were observed using a transmission electron microscope
(TEM) operated at 200 kV. Specimens for the cross-sectional
TEM studies (100 nm in thickness) were prepared by the
standard procedure that includes an embedding of the films in
epoxy resin and a sectioning with an ultra-microtome.

EMR studies were carried out at room temperature using a
conventional X-band (ν = 9.45 GHz) electron spin resonance
spectrometer equipped with a cylindrical TE011 cavity. The
films were cut into circular discs (3 mm in diameter). They
were held in either parallel or perpendicular orientation to the
sample plane of the dc sweeping magnetic field (H sw

ext ) in the
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Figure 3. The observed average diameter dave (open circles) and
calculated average interparticle spacing rave (solid circles) are plotted
as a function of the average volume fraction of Ni (ηave).

cavity; the perpendicular and parallel orientation corresponds
to the θ = 0◦ and θ = 90◦ configuration in this paper. H sw

ext was
swept from 0 to 10 kOe. A standard field modulation technique
is used so that the obtained signal corresponds to the first field
derivative of the absorbed microwave power.

5. Results and discussion

5.1. Experimental results

Cross-sectional TEM observation showed that spherical fcc-
Ni nanoparticles about 8 nm in diameter were grown in
the surface composite layers of PI films [32]. The average
particle diameter (dave (nm)) is fixed around 8 nm for all
samples [34]. However, the average thickness of the composite
layer (tave (μm)) observed by TEM decreases from 4.09 to
0.714 μm as the annealing time increases from 0 to 130 min.
The shrinkage of the composite layers originates from the
thermal decomposition of PI matrices by Ni nanoparticles as a
catalyst, vaporization of generated oligomeric (low molecular
weight) molecules and the volume loss of the matrices during
annealing [31]. Using observed tave and the amount of
adsorbed Ni2+ (N = 1972.5 × 10−9 mol cm−2) determined by
the ICP before annealing, we can calculate the average volume
fraction (ηave) of Ni particles in the composite layer. The ηave

(%) is calculated by ηave = (N × 58.7 × 100)/(tave × 8.91 ×
10−4) using the atomic weight of Ni (58.7) and the density of
bulk fcc-Ni (8.91 (g cm−3)). Since tave decreases in spite of the
same N in all samples, ηave increased from 3.2 to 18.2% with
increasing annealing time.

ηave is a function of dave and an average center-to-center
interparticle spacing rave (ηave ∝ (dave/rave)

3). Therefore, an
increase in ηave at a fixed dave corresponds to a decrease in rave.
If we assume a simple 3D arrangement of the Ni nanoparticles
with dave occupying the sites of a periodic cubic lattice in the

Figure 4. EMR signals with various rave in (a) the perpendicular
(θ = 0◦) and (b) parallel (θ = 90◦) configurations. A black solid line
corresponds to rave = 19.3 nm. The line color changes to red as rave

decreases.

(This figure is in colour only in the electronic version)

film, as shown in figure 1(b), the values of rave in the present
samples can be roughly estimated from the value of ηave. In
figure 3, the evaluated rave are plotted as a function of ηave

(solid circles). The dave is also plotted in the same figure (open
circles). In the present samples (dave ∼ 8 nm), an increase in
ηave from 3.2 to 18.2% corresponds to a decrease in rave from
19.3 to 11.4 nm. Figure 3 clearly shows that we have succeeded
in decreasing rave between the Ni particles, which maintain a
fixed dave.

Figure 4 exhibits experimental EMR signals with ν =
9.45 GHz for various rave. The inset in figure 4(a)
schematically illustrates the sample configuration in the
external field. Figure 4(a) shows EMR signals for the
perpendicular (θ = 0◦) configuration. Figure 4(b) shows
the signals for the parallel (θ = 90◦) configuration. In both
configurations, the signal for rave = 19.3 nm is observed
around 3000 Oe. Figure 4(a) shows that the resonance field H ′

0
of the signal for the θ = 0◦ configuration shifts to the higher
field side as rave decreases down to 11.4 nm. In contrast, the
signal for the θ = 90◦ configuration shifts to a lower field with
decreasing rave (figure 4(b)). We see that the signal becomes
broad with decreasing rave in both configurations.

Figure 5(a) shows H ′
0 plotted as a function of rave. Solid

squares correspond to the H ′
0 data for the θ = 0◦ configuration

and open squares to the data for the 90◦ configuration. H0

is indicated by a dashed line at 3040 Oe for 9.45 GHz. In

5
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Figure 5. The interparticle spacing rave versus (a) an apparent
resonance field H ′

0 and (b) a peak-to-peak resonance signal width

Hpp. The solid symbols correspond to the perpendicular (θ = 0◦)
configurations. The open symbols correspond to the parallel
(θ = 90◦) configurations. The resonance field for an isolated
spherical Ni particle is also indicated as H0.

figure 5(b), the peak-to-peak linewidth (
Hpp) of the signal
is plotted. Solid triangles correspond to the data for θ = 0◦
configurations. Open triangles correspond to those for θ = 90◦
configurations. As rave decreases 
Hpp increases from about
500 to 800 Oe.

In the following section, based on a numerical simulation
of the EMR in interacting Ni nanoparticles, we address
these features of decreasing interparticle spacing observed in
experiments: (i) a significant shift of the resonance field and
(ii) an increase in the linewidth of the EMR signals in both
configurations.

5.2. Resonance field

We carried out numerical simulations for 8 nm Ni nanoparticle
systems, in which the interparticle distance r0 is set to 10, 15
and 20 nm, and ∞. A decrease in r0 leads to an increase in
the dipole interaction between nanoparticles in a composite
film. The derivative curves of the calculated absorption lines
correspond to calculated EMR signals. The calculated EMR
signals for the θ = 0◦ configuration are shown in figure 6(a)
and that for the θ = 90◦ configurations in figure 6(b). In
figure 7, the shift variation of the resonance field δH0 =
H ′

0 − H0 in the simulation is plotted as a function of the inverse
of interparticle distance 1/rave. The solid line corresponds
to the calculated δH0 for the θ = 0◦ configuration and the
dashed one to that for the θ = 90◦ configuration. The
experimentally observed δH0 is also plotted in the same figure;
solid squares are assigned to the measured δH0 for the θ = 0◦

Figure 6. Calculated EMR signals in (a) the perpendicular (θ = 0◦)
and (b) parallel (θ = 90◦) configurations as a function of H sw

ext/H0.

Figure 7. Shift variation of the resonance field (δH0) plotted as a
function of the inverse of the interparticle distance of Ni particles.
θ = 0◦ corresponds to the perpendicular configuration. θ = 90◦
corresponds to the parallel configuration. The solid and open squares
show measured δH0 at θ = 0◦ and 90◦, respectively. The solid and
dashed lines exhibit the calculated data at θ = 0◦ and θ = 90◦,
respectively.

configuration and open squares to the δH0 for the θ = 90◦
configuration. We see in figure 7 that the shift of the resonance
field obtained in the simulation quantitatively agrees with the
measured one. The present results clearly show that the shift
of the resonance field (δH0) is attributed to an increase in
the dipole interactions. The major difference of the measured
results from the calculated ones could be caused by random
distribution of the nanoparticles in the experiment [41, 42]. It
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is worth noting here that |δH0|/H0 for the θ = 0◦ configuration
is almost twice as large as that for the θ = 90◦ configuration.
This was predicted by equations (6) and (9) in section 2 [32].

A shift of the resonance field depending on the direction
of applied magnetic field is well known in ferromagnetic
resonance of continuous films [37]. The shift is caused by the
demagnetization field, which originates from the summation
of dipole fields between the magnetic atoms in the films [44].
In the present nanoparticle systems, we may draw a similar
picture; dipolar fields between discrete magnetic nanoparticles
generate the demagnetization field in the composite film,
leading to a shift of the resonance field. However, the shift
variation for nanoparticle systems is smaller than that for the
continuous ferromagnetic films [32].

In a continuous film, strong exchange interaction connects
neighboring spins and the dipole field can be treated as
uniform in the film. As described in the classical Heisenberg
spin model, the exchange interaction depends only on the
angle between neighboring spins. The interacting field is
independent of the direction of spins. In other words, the
degree of freedom is limited to a very small number. The
system thus behaves as if there was a single spin under a strong
applied field, enabling us to apply a single spin approximation
for representing a continuous film. In contrast, in the discrete
nanoparticle systems, the magnetization in a single particle is
weakly connected to other particles by the dipole interaction.
As in equation (1), the magnetic dipole field shows a strong
angular dependence, because the sign of the dipole field is
dependent on the product of magnetization vector m and
position vector r. Therefore, the dipole interactions between
particles are not uniform; the nanoparticle system is a dynamic
many-bodied system.

Additionally, the static approximation is inadequate in the
quantitative discussion. The limit of the static approach affects
the resonance linewidth in particular. It is reported that, when
the external field is applied in parallel to the continuous film
plane, i.e. θ = 90◦ configuration, a decrease in the film
thickness leads to a decrease in the resonance linewidth [45].
This is explained by a decrease in the demagnetization field.
In contrast, in the composite films, a smaller interparticle
distance rave and r0, which correspond to a thinner composite
film in the present study, brings about an increase in linewidth
as discussed in the next subsection. Therefore, the decrease
in the demagnetization field does not explain an increase in
linewidth in the interacting nanoparticle systems. We need to
gain a clearer understanding of the dipole field in nanoparticle
systems within the framework of the dynamic analysis in order
to reveal the origins of the broadening of the EMR signals.

5.3. Signal linewidth

We consider the influence of the magnetic dipole field on
the linewidth (
Hpp) of the EMR signal. Figure 8 shows
the normalized linewidth (
Hpp) obtained in experiments and
simulation plotted as a function of 1/rave. In the experimental
result, the linewidth 
Hpp increases with increasing 1/rave

in both configurations. This variation of linewidth is also
reproduced by the numerical simulation, although the variation

Figure 8. The normalized linewidth (
Hpp) plotted as a function of
the inverse of the interparticle distance of Ni particles. θ = 0◦
corresponds to the perpendicular configuration. θ = 90◦ corresponds
to the parallel configuration. The solid and open triangles show
measured 
Hpp at θ = 0◦ and θ = 90◦, respectively. The solid and
dashed lines exhibit the calculated data at θ = 0◦ and θ = 90◦,
respectively.

in the experiment is much larger than that in the simulation at
a large 1/rave.

We offer plausible explanations for a larger EMR
linewidth with decreasing interparticle spacing observed in
the experiment. The small interparticle distance in the
composite film gives rise to the strong dipole fields between
the particles for any direction of the external applied field.
The influence of the dipole broadening is thus significant
in the composite system [46]. The measured signals are,
however, much broader as shown in figure 8. Another
possibility is the inhomogeneity in the nanocomposite. In a
continuous film, the inhomogeneity of internal magnetic field
broadens the linewidth of ferromagnetic resonance [47]. The
inhomogeneity of a shape anisotropy, which is originated from
the inhomogeneous dipole field, is particularly an origin of a
large linewidth [48]. In a nanocomposite film, we first consider
the distribution of particle diameters. The magnetization values
mi of particles are randomly distributed within (1 ± δm)m̄,
where m̄ is the averaged magnetization of particles and δm

defines the range of a deviation. δm = 0.15 and 0.30 are
numerically examined in the present model calculation. For
spherical particles, δm = 0.15 corresponds to 5% deviation
from the averaged diameter and δm = 0.30 to 10% deviation
from the averaged diameter. The experimentally observed
deviation from dave was about 15%.

The calculated absorption line profiles for δm = 0, 0.15
and 0.30 are shown in figure 9. In the calculations, H sw

ext is
applied in the θ = 0◦ direction and the interparticle distance
r0 = 10 nm. The line profile is normalized by the maximum
value. The linewidth (
Hpp/H0) increases with δm , even if
the damping factor α is fixed at 0.01. The figure clearly
shows that a large distribution of particle diameters brings
about broadening. The deviation of mi from the average
value causes a large distribution of H total

dip as expressed in
equation (1). The change of the magnetic dipole fields between
particles expands the absorption linewidth of the EMR. In this
sense, the inhomogeneity for an interparticle distance may also
influence the absorption linewidth, because the strength of the

7
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Figure 9. Peak profiles of inhomogeneous magnetization in the
composite film with the interparticle distance r0 = 10 nm as a
function of H sw

ext /H0 in the perpendicular (θ = 0◦) configuration. The
magnetization of particles ranges within (1 ± δm)m̄. (a) δm = 0,
(b) δm = 0.15 and (c) δm = 0.30. The peak width (
Hpp/H0) is also
indicated.

dipole field is proportional to r−3 as shown in equations (2)–
(4). Particularly for the region of small rave, the effect of
the inhomogeneity in particle position must become more
significant. Accordingly, composite films with high volume
fraction would show a large linewidth. Owing to the Ewalt
sum, the simulation on randomly distributed particles is quite
difficult, however.

5.4. Parallel and perpendicular components of dipolar field

Figure 8 shows that the linewidth 
Hpp becomes broad when
1/rave increases. The increase in 1/rave leads to a peak

Figure 10. The line profile of EMR signal under influence of the
magnetic dipole field in the θ = 0◦ configuration. The bold line
describes the precession of isolated particle having resonance field
H0 (signal A). The dashed line stands for the case of H ′

0 = H0 + H‖,
in which H⊥ is artificially H⊥ = 0 (signal B). The solid thin line
represents the case with a finite H⊥ (signal C).

shift δH0, which is originated from the shape anisotropy of
the composite films and is equivalent to the dipole field as
shown in figure 7. H total

dip for both the θ = 0◦ and the
θ = 90◦ configurations consists of two components. The
major component of H total

dip is parallel to the applied field H sw
ext.

The finite value of m Hp additionally generates a perpendicular
component of H total

dip against H sw
ext in the resonance state.

Hereafter, the parallel and perpendicular components of H total
dip

against H sw
ext, i.e. the precession axis, are expressed as H‖ and

H⊥.
In the equilibrium state of precession, H‖ remains

constant independent of time. The simple calculation of
the demagnetizing field uses only H‖, because of H‖ �
H⊥. This corresponds to a static approximation used in
the Kittel equation. On the other hand, even though the
absolute value |H⊥| is constant, the field vector H⊥ oscillates
in direction during the precession. To account for H⊥, a
time-dependent calculation is necessary. This is a dynamic
approximation for the magnetic dipole field in a resonance
model, which represent the present experiments exactly. In the
case of nanocomposite material, the dynamic approximation is
necessary to understand the resonance condition, because the
dipole interaction among particles is not uniform in space and
it is not constant in time.

We numerically studied the dynamic effect of H⊥ on the
line profile of the EMR signal for the case of θ = 0◦ with r0 =
10 nm as shown in figure 10. A bold line corresponds to the
precession of the isolated particles having resonance field H0

(signal A). A dashed line stands for the case of H ′
0 = H0 + H‖,

in which H⊥ is artificially H⊥ = 0 (signal B). A solid thin line
represents the case for a finite H⊥ (signal C). In figure 10, the
peak-to-peak height of signal A is normalized to unity. Signal
B shows that 
H (B)

pp /
H (A)
pp = 1.03; the linewidth of signal

B is almost the same as that of signal A when we ignore the
component H⊥ in the dipole field. In contrast to signal B, the
width of signal C is broadened by the influence of a dipole field,
which consists of both H‖ and H⊥; 
H (C)

pp /
H (A)
pp = 1.42.

8
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H⊥ also affects the resonance field. The shift of a
resonance field for signal B is δH (B)/H0 = 0.154, which
is equivalent to H‖/H0. This is smaller than the measured
value as shown in figure 7. For signal C, on the other hand,
δH (C)/H0 = 0.216, which gives δH (C) > δH (B) = H‖
and is comparable to the measured value in figure 7. We
thus conclude that H⊥ critically influences both the resonance
field and linewidth. In particular, the linewidth cannot be
reproduced without H⊥. In contrast to H⊥, the influence of
H‖ is limited to the shift of the resonance field.

It is worth noting that δH is not given by the simple
summation of H‖ + H⊥, although the magnitude of H⊥ is
very small (H⊥/H0 = 5 × 10−4). Since a decrease in r0

leads to an increase in H⊥, a smaller r0 brings about a weak
EMR signal. We conclude that the dynamic effect of the
perpendicular component H⊥ of the dipolar field is among
the origins of the broader EMR signal despite the very small
amplitude of H⊥ compared to that of H‖. The dynamic effect
of a dipole field significantly changes the resonance conditions
through the nonlinearity of magnetic nanoparticle systems.

6. Conclusions

Metallic Ni nanoparticles were embedded in polymer
matrices forming nanocomposite films. The average particle
diameter dave and the average interparticle distance rave were
independently controlled. We measured the EMR signals
of nanocomposite films with dave = 8 nm and various
rave. In addition, we constructed the micromagnetic model to
directly solve the LLG equation of the magnetization of the
nanoparticle systems with mutual dipolar interaction.

The present study shows that, for discrete and regularly
arrayed nanoparticle systems, the exact treatment of the dipole
field and dynamic analysis are indispensable for quantitative
discussion on the resonance field position and linewidth of
EMR signals. Micromagnetic calculations using the exact
treatment of the dipole field successfully reproduced the shift
of the resonance field and the broadening of the resonance
signal with decreasing interparticle spacing rave observed in
experiments. The shift and broadening thus mainly arises from
an increase of magnetic dipole fields due to a decrease of rave,
although an inhomogeneous dipolar field induced by particle
diameter and spatial distribution may cause further broadening.
The latter origin of line broadening is, however, difficult to treat
exactly in the calculations.

Most significantly, the dipole field H total
dip in the

nanoparticle systems consists of parallel H‖ and perpendicular
components H⊥ against the precession axis. The influence of
H‖ is limited to the peak shift. In contrast, we reveal that
H⊥ critically influences both the resonance field and linewidth,
despite the comparatively small magnitude of H⊥.
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